38 research outputs found

    Dominating Biological Networks

    Get PDF
    Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of “biologically central (BC)” genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network

    Topological network alignment uncovers biological function and phylogeny

    Full text link
    Sequence comparison and alignment has had an enormous impact on our understanding of evolution, biology, and disease. Comparison and alignment of biological networks will likely have a similar impact. Existing network alignments use information external to the networks, such as sequence, because no good algorithm for purely topological alignment has yet been devised. In this paper, we present a novel algorithm based solely on network topology, that can be used to align any two networks. We apply it to biological networks to produce by far the most complete topological alignments of biological networks to date. We demonstrate that both species phylogeny and detailed biological function of individual proteins can be extracted from our alignments. Topology-based alignments have the potential to provide a completely new, independent source of phylogenetic information. Our alignment of the protein-protein interaction networks of two very different species--yeast and human--indicate that even distant species share a surprising amount of network topology with each other, suggesting broad similarities in internal cellular wiring across all life on Earth.Comment: Algorithm explained in more details. Additional analysis adde

    Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis.</p> <p>Results</p> <p>In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes.</p> <p>Conclusions</p> <p>We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.</p

    An integrative approach to modeling biological networks

    No full text
    Networks are used to model real-world phenomena in various domains, including systems biology. Since proteins carry out biological processes by interacting with other proteins, it is expected that cellular functions are reflected in the structure of protein-protein interaction (PPI) networks. Similarly, the topology of residue interaction graphs (RIGs) that model proteins’ 3-dimensional structure might provide insights into protein folding, stability, and function. An important step towards understanding these networks is finding an adequate network model, since models can be exploited algorithmically as well as used for predicting missing data. Evaluating the fit of a model network to the data is a formidable challenge, since network comparisons are computationally infeasible and thus have to rely on heuristics, or “network properties.” We show that it is difficult to assess the reliability of the fit of a model using any network property alone. Thus, we present an integrative approach that feeds a variety of network properties into five machine learning classifiers to predict the best-fitting network model for PPI networks and RIGs. We confirm that geometric random graphs (GEO) are the best-fitting model for RIGs. Since GEO networks model spatial relationships between objects and are thus expected to replicate well the underlying structure of spatially packed residues in a protein, the good fit of GEO to RIGs validates our approach. Additionally, we apply our approach to PPI networks and confirm that the structure of merged data sets containing both binary and co-complex data that are of high coverage and confidence is also consistent with the structure of GEO, while the structure of less complete and lower confidence data is not. Since PPI data are noisy, we test the robustness of the five classifiers to noise and show that their robustness levels differ. We demonstrate that none of the classifiers predicts noisy scale-free (SF) networks as GEO, whereas noisy GEOs can be classified as SF. Thus, it is unlikely that our approach would predict a real-world network as GEO if it had a noisy SF structure. However, it could classify the data as SF if it had a noisy GEO structure. Therefore, the structure of the PPI networks is the most consistent with the structure of a noisy GEO

    Complementarity of network and sequence information in homologous proteins

    No full text
    Traditional approaches for homology detection rely on finding sufficient similarities between protein sequences. Motivated by studies demonstrating that from non-sequence based sources of biological information, such as the secondary or tertiary molecular structure, we can extract certain types of biological knowledge when sequence-based approaches fail, we hypothesize that protein-protein interaction (PPI) network topology and protein sequence might give insights into different slices of biological information. Since proteins aggregate to perform a function instead of acting in isolation, analyzing complex wirings around a protein in a PPI network could give deeper insights into the protein’s role in the inner working of the cell than analyzing sequences of individual genes. Hence, we believe that one could lose much information by focusing on sequence information alone

    Reconstituting protein interaction networks using parameter-dependent domain-domain interactions

    Get PDF
    BACKGROUND: We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain interactions (DDIs) that mediate the physical interactions between proteins. Experimental data confirm that DDIs are more consistent than their corresponding PPIs, lending support to the notion that analyses of DDIs may improve our understanding of PPIs and lead to further insights into cellular function, disease, and evolution. However, currently available experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of structural data, determining which particular DDI mediates any given PPI is a challenge. RESULTS: We present two contributions to the field of domain interaction analysis. First, we introduce a novel computational strategy to merge domain annotation data from multiple databases. We show that when we merged yeast domain annotations from six annotation databases we increased the average number of domains per protein from 1.05 to 2.44, bringing it closer to the estimated average value of 3. Second, we introduce a novel computational method, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set of domain pairs that can reconstruct the original set of protein interactions, while attempting to minimize false positives. Based on a set of PPIs from multiple organisms, our method extracted 27% more experimentally detected DDIs than existing computational approaches. CONCLUSIONS: We have provided a method to merge domain annotation data from multiple sources, ensuring large and consistent domain annotation for any given organism. Moreover, we provided a method to extract a small set of DDIs from the underlying set of PPIs and we showed that, in contrast to existing approaches, our method was not biased towards DDIs with low or high occurrence counts. Finally, we used these two methods to highlight the influence of the underlying annotation density on the characteristics of extracted DDIs. Although increased annotations greatly expanded the possible DDIs, the lack of knowledge of the true biological false positive interactions still prevents an unambiguous assignment of domain interactions responsible for all protein network interactions. Executable files and examples are given at: http://www.bhsai.org/downloads/padds

    The overlap of BC genes from the four categories in the human PPI network.

    No full text
    <p>The overlap of BC genes from the four categories in the human PPI network.</p

    Graphlets, automorphism orbits, and GDVs.

    No full text
    <p>(<b>A</b>) All 9 graphlets with 2, 3 and 4 nodes, denoted by , ,…,; they contain 15 topologically unique node types, called automorphism orbits, denoted by 0, 1, 2, …, 14. In a particular graphlet, nodes belonging to the same orbit are of the same shade (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0023016#pone.0023016-Prulj2" target="_blank">[47]</a> for details). (<b>B</b>) An illustration of the GDV of node ; it is presented in the table for orbits 0 to 14: is touched by 4 edges (orbit 0), end-nodes of 2 graphlets (orbit 1), etc. The figure is taken from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0023016#pone.0023016-Milenkovi3" target="_blank">[53]</a>.</p

    Overlap of the three DSs created by DS-RAI, DS-DC, and DS-GDC algorithms applied to the human PPI network.

    No full text
    <p>Overlap of the three DSs created by DS-RAI, DS-DC, and DS-GDC algorithms applied to the human PPI network.</p

    The top 1% (i.e., 91) GDC-central genes.

    No full text
    <p>If a gene is an aging (“A”), cancer (“C”), HIV (“HIV”), or pathogen-interacting (“PI”) gene, there is an “X” in the corresponding entry.</p
    corecore